Using Sird Mathematical Model Track the Spread of Lassa fever on a Multicity Network of Nigeria

Abdulganiyu Abdulrahman, Rabiu Idris, Amit Mishra
Department of Maths/Computer Science, Ibrahim Badamasi Babangida University, Lapai, Niger State, Nigeria

Abstract:

This paper develops a mathematical model for the dynamics of Lassa fever disease using a set of four differential equations for the susceptible human, infected human, recovered human and dead human. The model is mathematically and epidemiologically well posed and then investigate the model for equilibrium and stability. Core to the research analysis is the computation of a threshold value; the basic spread of disease from different state in Nigeria which is the number of secondary infections due to introduction of an infective individual into a susceptible population. This research analysis shows that the disease will spread faster in Nigeria when started from Lagos and Kano state of Nigeria.

Keywords: susceptible, infected, recovery, death, Lassa fever

I. INTRODUCTION

The rate at which strange fever spread in developing countries like Nigeria Lassa fever outbreak have killed many people. Nigeria Centre for Disease (NCDC) statistics show that reported cases of the hemorrhagic disease — both confirmed and suspected — stood at 175 with a total of 101 deaths since August 2015. [4]

The disease coursed endemic in Liberia, Sierra Leone and other West African countries. In some parts of Sierra Leone and Liberia, 10% to 16% of all patients admitted to hospitals have Lassa fever. In Sierra Leone it is estimated that 6% of all residents in the initial endemic area have antibodies to Lassa fever, even though only 0.2% were recognized as clinically ill. About 2/3 of all reported cases are women, but this might be as a result of exposure, rather than a tendency toward greater susceptibility in women to the disease. Some Lassa fever cases have been "imported" into the U.S. and U.K. through travellers who acquired the disease elsewhere, [12].

Lassa fever is in the same group as Ebola and Marburg, these are deadly infections that lead to vomiting and, haemorrhagic bleeding. The name of Lassa originated from the town in northern Nigeria where it was first identified in 1969. Endemic to the region, Lassa fever is asymptomatic in 80 percent of cases but for others it can cause internal bleeding, especially if diagnosed late.

The virus is spread through contact with food or household items contaminated with rats’ urine or faeces or after coming in direct contact with the bodily fluids of an infected person. The symptoms of Lassa fever develop about 21 days after the infection with acute illness involving multi organs. Specific symptoms include fever, facial swelling, muscle fatigue, vomiting, cough, meningitis, hypertension, and sensor neural hearing loss often permanent.

II. LITERATURE REVIEW

The earliest account of the mathematical modeling of the spread of a disease was carried out in 1966 by Daniel Bernoulli. Trained as a physician, Bernoulli created a mathematical model to defend the practice of inoculating against smallpox [10]. The calculations from this model showed that universal inoculation against smallpox would increase the life expectancy from 26 years 7 months to 29 years 9 months [3].

Following Bernoulli, other physicians contributed to modern mathematical epidemiology. Among the most acclaimed of these was A. G. McKendrick and W. O. Kermack, whose paper a contribution to the Mathematical Theory of Epidemics was published in 1927. A simple deterministic (compartamental) model was formulated in this paper and was successful in predicting [2].

Developed a Lassa fever model using the sex structure approach. Their model represented the transmission dynamics of the Lassa fever disease using a set of ordinary differential equations. The total human population at time \(t \) denoted by \(N(t) \) was subdivided into four (4) mutually exclusive sub-populations of Susceptible Male, Infected Male, Susceptible Female, Infected Female. Similarly, the total Natural Reservoir/host population at time \(t \), denoted by \(N(t)R \) was sub-divided into dormant Reservoir host, active Reservoir and host. Their model had the following assumptions.

Susceptible individuals, male/female can be infected via sex intercourse with the active Reservoir (Mastomys Natelensis), and via sexual intercourse with opposite sex. Two major controls were considered, the use of condom to reduce contract via sexual interaction and the use of pesticide/Rat poison to kill the natural Reservoir (Mastomys Natelensis). And finally, horizontal transmission for human and vertical transmission for the Reservoir.

This book mainly serves as a proper introduction to mathematical modeling with Microsoft Excel. Introducing basic modeling techniques such as dynamic modeling and graphing, this book explains the rates of change in the relations...
between the three compartments, S' (t), I' (t) and R' (t). Namely, as the infected population increases, the rate at which the susceptible population decreases can be calculated, and vice versa.

Using this knowledge, we are thus able to create our own SIR model. Based on statistics we gather, we can utilize similar equations as described in the book to create our own estimations of how the Susceptible, Infected and Recovered populations will change according to the characteristics of the respective vector-borne diseases at hand.

III. METHODOLOGY

This paper will modify the existing SIR model by introducing death population. We will now have four population group i.e. Susceptible, Infected and Recovered, Dead.

IV. PREPARE YOUR PAPER BEFORE STYLING

Before you begin to format your paper, first write and save the content as a separate text file. Keep your text and graphic files separate until after the text has been formatted and styled. Do not use hard tabs, and limit use of hard returns to only one return at the end of a paragraph. Do not add any kind of pagination anywhere in the paper. Do not number text heads—the template will do that for you.

Finally, complete content and organizational editing before formatting. Please take note of the following items when proofreading spelling and grammar:

A. Abbreviations and Acronyms

Define abbreviations and acronyms the first time they are used in the text, even after they have been defined in the abstract. Abbreviations such as IEEE, SI, MKS, CGS, sc, dc, and rms do not have to be defined. Do not use abbreviations in the title or heads unless they are unavoidable.

B. Units

- Use either SI (MKS) or CGS as primary units. (SI units are encouraged.) English units may be used as secondary units (in parentheses). An exception would be the use of English units as identifiers in trade, such as “3.5-inch disk drive”.
- Avoid combining SI and CGS units, such as current in amperes and magnetic field in oersteds. This often leads to confusion because equations do not balance dimensionally. If you must use mixed units, clearly state the units for each quantity that you use in an equation.
- Do not mix complete spellings and abbreviations of units: “Wb/m2” or “webers per square meter”, not “webers/m2”. Spell out units when they appear in text: “. . . a few henries”, not “. . . a few H”.
- Use a zero before decimal points: “0.25”, not “.25”.

C. Equations

The equations are an exception to the prescribed specifications of this template. You will need to determine whether or not your equation should be typed using either the Times New Roman or the Symbol font (please no other font). To create multileveled equations, it may be necessary to treat the equation as a graphic and insert it into the text after your paper is styled.

Number equations consecutively. Equation numbers, within parentheses, are to position flush right, as in (1), using a right tab stop. To make your equations more compact, you may use the solidus (/), the ex function, or appropriate exponents. Italicize Roman symbols for quantities and variables, but not Greek symbols. Use a long dash (—) rather than a hyphen for a minus sign. Punctuate equations with commas or periods when they are part of a sentence, as in

$$\alpha + \beta = \gamma.$$ \hspace{1cm} (1)

Note that the equation is centered using a center tab stop. Be sure that the symbols in your equation have been defined before or immediately following the equation. Use “(1)”, not “Eq. (1)” or “equation (1)”, except at the beginning of a sentence: “Equation (1) is . . .”

D. Some Common Mistakes

- The word “data” is plural, not singular.
- The subscript for the permeability of vacuum μ_0, and other common scientific constants, is zero with subscript formatting, not a lowercase letter “o”.
- In American English, commas, semi-/colons, periods, question and exclamation marks are located within quotation marks only when a complete thought or name is cited, such as a title or full quotation. When quotation marks are used, instead of a bold or italic typeface, to highlight a word or phrase, punctuation should appear outside of the quotation marks. A parenthetical phrase or statement at the end of a sentence is punctuated outside of the closing parenthesis (like this). (A parenthetical sentence is punctuated within the parentheses.)
- A graph within a graph is an “inset”, not an “insert”. The word alternatively is preferred to the word “alternately” (unless you really mean something that alternates).
- Do not use the word “essentially” to mean “approximately” or “effectively”.
- In your paper title, if the words “that uses” can accurately replace the word “using”, capitalize the “u”; if not, keep using lower-cased.
- Be aware of the different meanings of the homophones “affect” and “effect”, “complement” and “compliment”, “discreet” and “discrete”, “principal” and “principle”.

© 2017, IJERMT All Rights Reserved
- Do not confuse “imply” and “infer”.
- The prefix “non” is not a word; it should be joined to the word it modifies, usually without a hyphen.
- There is no period after the “et” in the Latin abbreviation “et al.”.
- The abbreviation “i.e.” means “that is”, and the abbreviation “e.g.” means “for example”.

V. USING THE TEMPLATE

After the text edit has been completed, the paper is ready for the template. Duplicate the template file by using the Save As command, and use the naming convention prescribed by your conference for the name of your paper. In this newly created file, highlight all of the contents and import your prepared text file. You are now ready to style your paper.

A. Authors and Affiliations

The template is designed so that author affiliations are not repeated each time for multiple authors of the same affiliation. Please keep your affiliations as succinct as possible (for example, do not differentiate among departments of the same organization). This template was designed for three affiliations.

1) For authors of only one affiliation (Heading 3): To change the default, adjust the template as follows.
 a) Selection (Heading 4): Highlight all author and affiliation lines.
 b) Change number of columns: Select Format > Columns >Presets > One Column.
 c) Deletion: Delete the author and affiliation lines for the second affiliation.
 d) For authors of more than two affiliations: To change the default, adjust the template as follows.
 e) Selection: Highlight all author and affiliation lines.
 f) Change number of columns: Select Format > Columns > Presets > One Column.
 g) Highlight author and affiliation lines of affiliation 1 and copy this selection.
 h) Formatting: Insert one hard return immediately after the last character of the last affiliation line. Then paste the copy of affiliation 1. Repeat as necessary for each additional affiliation.
 i) Reassign number of columns: Place your cursor to the right of the last character of the last affiliation line of an even numbered affiliation (e.g., if there are five affiliations, place your cursor at end of fourth affiliation). Drag the cursor up to highlight all of the above author and affiliation lines. Go to Format > Columns and select “2 Columns”. If you have an odd number of affiliations, the final affiliation will be centered on the page; all previous will be in two columns.

B. Identify the Headings

Headings, or heads, are organizational devices that guide the reader through your paper. Text heads organize the topics on a relational, hierarchical basis. For example, the paper title is the primary text head because all subsequent material relates and elaborates on this one topic. Styles named “Paper Title”, “Heading 1”, “Heading 2”, “Heading 3”, and “Heading 4” are prescribed in this template.

C. Figures and Tables

1) Positioning Figures and Tables: Place figures and tables at the places where they needed. All tables should be in Classic 1 format with borders to heading and subheading columns. Large figures and tables may span across both columns. To do so select text above one column table and convert it in two column and then select text below one column table and convert it into two column. Figure captions should be below the figures; table heads should appear above the tables. Insert figures and tables after they are cited in the text. Use the abbreviation “Fig. 1”, even at the beginning of a sentence. Also Submit figures and tables on separate page at the end of manuscript with their labels.

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Heading 1</th>
<th>Heading 2</th>
<th>Heading 3</th>
<th>Heading 4</th>
<th>Heading 5</th>
<th>Heading 6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sample of a Table footnote. (Table footnote)

We suggest that you use border for graphic (ideally 300 dpi), with all fonts embedded and try to reduce the size of figure to be adjust in one column. Figure and Table Labels: Use 8 point Times New Roman for Figure and Table labels. Use words rather than symbols or abbreviations when writing Figure axis labels to avoid confusing the reader.

<table>
<thead>
<tr>
<th>Table</th>
<th>Table Type Styles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sample of a Table footnote. (Table footnote)
ACKNOWLEDGMENT

The preferred spelling of the word “acknowledgment” in America is without an “e” after the “g”. Avoid the stilted expression, “One of us (R.B.G.) thanks . . .” Instead, try “R.B.G. thanks”. Put applicable sponsor acknowledgments here; DO NOT place them on the first page of your paper or as a footnote.

REFERENCES

List and number all bibliographical references in 9-point Times, single-spaced, at the end of your paper. When referenced in the text, enclose the citation number in square brackets, for example [1]. Where appropriate, include the name(s) of editors of referenced books. The template will number citations consecutively within brackets [1]. The sentence punctuation follows the bracket [2]. Refer simply to the reference number, as in [3]—do not use “Ref. [3]” or “reference [3]” except at the beginning of a sentence: “Reference [3] was the first . . .”

Number footnotes separately in superscripts. Place the actual footnote at the bottom of the column in which it was cited. Do not put footnotes in the reference list. Use letters for table footnotes.

Unless there are six authors or more give all authors’ names; do not use “et al.”.
Papers that have not been published, even if they have been submitted for publication, should be cited as “unpublished” [4]. Papers that have been accepted for publication should be cited as “in press” [5]. Capitalize only the first word in a paper title, except for proper nouns and element symbols.

For papers published in translation journals, please give the English citation first, followed by the original foreign-language citation [6].

[8] Electronic Publication: Digital Object Identifiers (DOIs):