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Abstract:  

 

he flow of a micropolar fluid between two discs of uniform porousity is studied in this problem. Both the 

discs are subjected to uniform suction. The velocities functions are expressed into the ascending power 

series of the suction Reynolds number (R). The behaviour of the dimensionless radial, axial and micro-

rotation velocity functions f, f' and g respectively w.r. to µ1 (vortex viscosity), µ2 (spin gradial viscosity), µ3 (micro-

inertia density) and R (suction Reynolds number) is shown graphically.     
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I.    INTRODUCTION 

The problem of disc flows has constituted a major field of study in fluid mechanics. The flows between two discs  

have applications in the fields of rotating machinery, computer storage devices, heat and mass exchangers, viscometry, 

lubrication, crystal growth, processes, biomechanics and oceanography. 

Stewartson [1] has discussed the problem of the flow between two rotating co-axial discs. Thereafter the problem of 

flow of a non-Newtonian fluids at small Reynolds number between two infinite discs was considered by Srivastava [2]. 

He has solved this problem by the perturbation technique using the Reynolds number as the perturbation parameter and 

investigated the effects of second-order fluid parameter on the flow. Sharma and Singh [3] discussed the problem of heat 

transfer in the flow of a second-order fluid between two enclosed rotating discs. In this problem they have investigated 

the nature of heat flux from the disc towards the fluid and from the fluid towards the disc. The problem of steady 

incompressible forced flow of a micropolar fluid between a rotating and a stationary disc was solved by Guram and 

Anwar [4]. Singh, Agarwal [5,6,7] have also discussed the problems of  fluid flow between two discs in different cases. 

The problems of fluid flow between two parallel porous discs have been of great interest due to their applications in 

the fields of design of thrust bearing, and radial diffusers. In the thrust bearing the discs are separated by means of a 

lubricant injected through the discs. The purpose of the present chapter  is to investigate the effects of micropolar 

material constants characterizing the vortex viscosity, spin gradient viscosity and the micro-inertia density on the flow of 

micropolar fluid between two porous discs which are subjected to uniform suction. 

 

II.    FORMULATION OF THE PROBLEM 

The governing equations of motion for the micropolar fluid given by Eringen [8] are: 
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where V


 is the fluid velocity vector, 


 the micro-rotation,   the density, p  the pressure, f


 and c


 are body 

force and body couple per unit mass, respectively. j  the microinertia, , , , , , k      are the material constants (or 

viscosity coefficients) and 
D

Dt
 signifies the material derivative. 

In a three dimensional cylindrical polar set of co-ordinates ( , , )r z  the system consists of two parallel stationary 

porous discs of radius sr . A steady,  laminar and incompressible micropolar fluid is flowing between these discs. The 

disc ( )z L   and the disc ( )z L  are subjected to uniform suction 2V . The centre of the discs is coinciding 

with the axis 0r  . The gape 2L  is taken small in comparison to the radius of the discs. The velocity components u  

and w  are taken to be in the direction of r  and z -axis, respectively. 

T 
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The velocity and the micro rotation components are taken as  
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On substituting the value of velocity vector and micro rotation vector given in equation (4) into the equations (1) to 

(3), we get 

0
u u w

r r z

 
  

 
                           (5) 

2 2

2 2 2

1
( )

u u u u N p u u
k k w

r r z r r zr r z

          
                      

                                                    (6) 

2 2

2 2

1
( )

w w w N N p w w
k k u w

r r r r z r zr z

            
                          

                                               (7) 

2 2

2 2 2

1
2

N N N N u w N N
k kN j u w

r r z r r zr r z

            
                                                                      

(8) 

Since both the discs are subjected to uniform suction therefore the fluid is flowing in the outward direction of both 

the discs with uniform velocity 2V . The direction of flow is ve  on the disc ( )z L  and ve  on the disc 

( )z L  . The micro-rotation component N  is zero at the disc as the curl of the velocity field is zero there. 

The boundary conditions on both the discs may be taken as 

                                                  w(r, -L)=-2V                                      w(r,  L)=2V, 

                                               ( , ) 0, ( , ) 0u r L u r L   ,  

( , ) 0, ( , ) 0N r L N r L                     (9) 

 

III.   SOLUTION OF THE PROBLEM 

 To solve the equations (5) to (8) subject to the boundary conditions (9) we take the similarity transformation 

similar to that of Von Karman[9]. 

( ), 2 ( ), ( )u rF z w F z N rG z                         (10) 

The equation of continuity is identically satisfied on using the velocity and micro rotation profile (10) in equation of 

continuity (5). On substituting the expression (10) in equation (6) and (7) and on eliminating pressure term from the 

equations thus obtained we get 

 ( ) 2 0ivk F kG FF                            (11) 

Again substituting the expression (10) in equation (8), we get 

 2 ( 2 ) 0G kF kG j F G FG                                             (12) 

where  prime denotes  differentiation of the function F and G with respect to z . 

The dimensionless functions may be introduced as: 

 
2( ) ( )

( ) , ( )
F z L G z

f g
V V

                                           (13) 

where z

L
   

Making use of (13) in (11) and (12) we obtain: 

 1 2 0ivf g Rff                       (14) 

and 

 2 3( 2 ) ( 2 ) 0g f g f g fg                                             (15) 

where prime denotes differentiation of the function f  and g  with respect to  . /( )R VL k     is the 

suction Reynolds number and 1 /( ),k k     
2

2 / ,kL    3 /jLV     are the dimensionless 
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micropolar material constants characterizing the vortex viscosity, the spin-gradient viscosity and the micro-inertia density 

respectively. Making use of the expressions  (10) and (13) in the boundary conditions (9), we get the transformed 

boundary conditions as: 

( 1) 1, (1) 1;f f     

( 1) 0, (1) 0;f f     

 ( 1) 0, (1) 0g g                                          (16) 

Replacing 1  by 1R , 2  by 2R  and 3  by 3R  the equation (14) and (15) will become: 

 
1 2 0ivf R g Rff                                     (17) 

and 

 
2 3( 2 ) ( 2 )g R f g R f g fg                                         (18) 

Assuming suction Reynolds number R  to be small, we can expand  the velocity function f  and micro rotation 

function g  in the ascending power series of the suction Reynolds number R  as: 

2
0 1 2( )f f Rf R f    , 

 2
0 1 2( )g g Rg R g                                                (19) 

The terms containing 
3R  and higher power of R  are neglected as R  (≤ 0.3) is assumed small. On substituting the 

expression of ( )f   and ( )g   given in (19) into the equation (17) and (18) and then comparing the terms independent 

of R , coefficient of R  and 
2R  from both sides of these equations we get set of equations as: 

 0 0ivf                                      (20) 

 1 0 0 01 2 0ivf g f f                          (21) 

 2 1 0 1 1 01 2 2 0ivf g f f f f                     (22) 

 
0 0g                                   (23) 
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Making use of expressions (19) in the boundary conditions (16). The latest transformed boundary conditions in terms 

of 
0 1 2 0 1 2 0 1, , , , , , ,f f f f f f g g    and 

2g  are: 

0 0 0 0( 1) 1, (1) 1; ( 1) (1) 0f f f f        , 

1 1 1 1( 1) 0, (1) 0; ( 1) (1) 0,f f f f        

2 2 2 2( 1) 0, (1) 0; ( 1) (1) 0,f f f f        

0 0( 1) 0 (1),g g    

1 1( 1) 0 (1),g g    

 
2 2( 1) 0 (1)g g                               (26) 

Now integrating the set of equations (20) to (25) subject to the boundary conditions (26) we get: 
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Therefore the velocity function ( ), ( )f f   and ( )g   may be obtained  by substituting the value of 

0 1 2 0 1 2 0 1 2, , , , , , , ,f f f f f f g g g    in the expressions 

2
0 1 2( ) ( ) ( ) ( )f f Rf R f       , 

2
0 1 2( ) ( ) ( ) ( )f f Rf R f          , 

and 

 2
0 1 2( ) ( ) ( ) ( )g g Rg R g                             (29) 

The dimensionless radial velocity U , axial velocity W  and micro rotation N  are obtained as: 
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IV.    RESULTS AND DISCUSSION 

The variation of the non-dimensional radial velocity f ' with ζ at μ2 = 0.5, R=0.2 for different values of the vortex 

viscosity μ1 =0.2, 0.4, 0.6 is represented through fig.(1). It is observed from this figure that the radial velocity function f ' 

decreases in the region  -1 < ζ < -0.4 and  0.4 < ζ < 1 with an increase in μ1 whereas increases in the region  -0.4 <  ζ < 

0.4 of the gaplength. It is also clear from this figure that the radial velocity function is minimum (equal to zero) at both 

the discs whereas it attain  its maximum value at the middle point of the gaplength. The shape of the figure is parabolic 

with its vertex upward. The graph of the velocity function f ' is symmetric approximately about the ζ =0 line. The 

behaviour of radial velocity function f ' with spin gradient viscosity μ2 shown in fig.(2) is similar to the behaviour of f ' 

with μ1 (see figure (1)) whereas the behaviour of f ' with suction Reynolds number R (represented  by fig.(3)) is just 

reversed to the behaviour of f' with μ1 and μ2. Increase in R(=ζVL/(μ+k)) means increase in the suction parameter V for 

constant density and material constants µ and k. 

Fig.(4) and fig.(5) represents the behaviour of the dimensionless axial velocity function f with μ1 and μ2 respectively. 

Fig.(4) represents the variation of f with ζ at μ2 =0.5, R=0.2 for different values of μ1 =0.2, 0.4, 0.6. It is evident from this 

figure that the axial velocity function f decreases with an increase μ1 in the first half of the gaplength when start 

increasing after the middle point ζ =0 upto the upper disc (ζ =1). The behaviour of f with μ2 (shown in fig.(5)) is similar 

to it's behaviour with μ1 (fig.(4)). Axial velocity function is zero at the middle point and equal to -1 and 1 at lower and 

upper disc. Fig.(6) exhibit the variation of f with R at μ1 = μ2 =0.5. The behaviour of f with R is just reversed to it's 

behaviour with μ1 and  μ2. 
The behaviour of dimensionless microrotation function g with ζ at μ3 =0.5, R= 0.2 for different values of μ2 =0.2, 0.4, 

0.6 is shown in fig.(7). The microrotation function g increases with an increase in the spin gradient viscosity μ2 in the first 

half and increases in the second half of the gaplength. It is also clear from fig.(7) that there is no microrotation on lower 

and upper disc as well as at the middle point of the gaplength. We conclude from the fig.(8) that the behaviour of 

microrotation function g with microinertia density μ3 is reversed to its behaviour with μ2 (fig.(7)). It is also observed in 

fig.(9) that the behaviour of g with Reynolds number R is similar to its behaviour with μ3 (see fig.(8)). 

 

Fig. (1): Variation of f ' with at and R=0.2 for different values of 1. 

f ' 

ζ 
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Fig. (2): Variation of  f ' with at and R=0.2 different values of 

 

 
Fig. (3): Variation of f' with at =0.5 for different values of R. 

 

 
Fig. (4): Variation of f' with  at and R=0.2 for different values of 1. 

 

 
Fig. (5): Variation of  f' with   at and R=0.2 different values of 
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Fig. (6): Variation of  f' with   atfor different values of R. 

 

 
Fig. (7): Variation of g with  at =0.5 ,R=0.2 for different values of 

 

 
Fig. (8): Variation of g with  at =1.0 ,R=0.2 for different values of 

 

 
Fig. (9): Variation of g with at =0.5 for different values of R 
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V.    CONCLUSION 

It is concluded from the fig.(1), (2), (3) that the radial velocity is maximum in the middle of the gaplength and zero 

at the lower and upper disc. Fig. (4), (5), (6) represents that the axial velocity is zero at the middle point with minimum at 

the lower disc and maximum at the upper disc. From fig.(7), (8), (9) we see that there is no microrotation at the lower and 

upper disc as well as at the middle point. The microrotation of the fluid particles is maximum in the middle of the first 

half in the positive direction whereas it is also maximum in the middle of the second half but in opposite direction. 

If we consider the lower disc (z=-L) to be non –porous then the results of the present problem are in good agreement 

to the results of Muhammad Ashraf,  M.Anwar Kamal and K.S.Syed [10]. 
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